Burnard Russell
British logician and philosopher
Also known as: Bertrand Arthur William Russell, 3rd Earl Russell of Kingston Russell, Viscount Amberley of Amberley and of Ardsalla
Written by
Fact-checked by
Last Updated: Jul 31, 2024 • Article History
Bertrand Russell
Bertrand Russell, 1960.
Top Questions
What was Bertrand Russell’s childhood like?
Where was Bertrand Russell educated?
What did Bertrand Russell write?
Bertrand Russell (born May 18, 1872, Trelleck, Monmouthshire, Wales—died February 2, 1970, Penrhyndeudraeth, Merioneth) was a British philosopher, logician, and social reformer, a founding figure in the analytic movement in Anglo-American philosophy, and recipient of the Nobel Prize for Literature in 1950. Russell’s contributions to logic, epistemology, and the philosophy of mathematics established him as one of the foremost philosophers of the 20th century. To the general public, however, he was best known as a campaigner for peace and as a popular writer on social, political, and moral subjects. During a long, productive, and often turbulent life, he published more than 70 books and about 2,000 articles, married four times, became involved in innumerable public controversies, and was honoured and reviled in almost equal measure throughout the world. Russell’s article on the philosophical consequences of relativity appeared in the 13th edition of the Encyclopædia Britannica.
Quick Facts
In full: Bertrand Arthur William Russell, 3rd Earl Russell of Kingston Russell, Viscount Amberley of Amberley and of Ardsalla
Born: May 18, 1872, Trelleck, Monmouthshire, Wales
Died: February 2, 1970, Penrhyndeudraeth, Merioneth (aged 97)
Awards And Honors: Nobel Prize (1950)
Notable Works: “Principia Mathematica”
Subjects Of Study: axiomatic method nuclear weapon barber paradox disarmament formal logic
Russell was born in Ravenscroft, the country home of his parents, Lord and Lady Amberley. His grandfather, Lord John Russell, was the youngest son of the 6th Duke of Bedford. In 1861, after a long and distinguished political career in which he served twice as prime minister, Lord Russell was ennobled by Queen Victoria, becoming the 1st Earl Russell. Bertrand Russell became the 3rd Earl Russell in 1931, after his elder brother, Frank, died childless.
Equations written on blackboard
Britannica Quiz
Numbers and Mathematics
Russell’s early life was marred by tragedy and bereavement. By the time he was age six, his sister, Rachel, his parents, and his grandfather had all died, and he and Frank were left in the care of their grandmother, Countess Russell. Though Frank was sent to Winchester School, Bertrand was educated privately at home, and his childhood, to his later great regret, was spent largely in isolation from other children. Intellectually precocious, he became absorbed in mathematics from an early age and found the experience of learning Euclidean geometry at the age of 11 “as dazzling as first love,” because it introduced him to the intoxicating possibility of certain, demonstrable knowledge. This led him to imagine that all knowledge might be provided with such secure foundations, a hope that lay at the very heart of his motivations as a philosopher. His earliest philosophical work was written during his adolescence and records the skeptical doubts that led him to abandon the Christian faith in which he had been brought up by his grandmother.
In 1890 Russell’s isolation came to an end when he entered Trinity College, University of Cambridge, to study mathematics. There he made lifelong friends through his membership in the famously secretive student society the Apostles, whose members included some of the most influential philosophers of the day. Inspired by his discussions with this group, Russell abandoned mathematics for philosophy and won a fellowship at Trinity on the strength of a thesis entitled An Essay on the Foundations of Geometry, a revised version of which was published as his first philosophical book in 1897. Following Kant’s Critique of Pure Reason (1781, 1787), this work presented a sophisticated idealist theory that viewed geometry as a description of the structure of spatial intuition.
In 1896 Russell published his first political work, German Social Democracy. Though sympathetic to the reformist aims of the German socialist movement, it included some trenchant and farsighted criticisms of Marxist dogmas. The book was written partly as the outcome of a visit to Berlin in 1895 with his first wife, Alys Pearsall Smith, whom he had married the previous year. In Berlin, Russell formulated an ambitious scheme of writing two series of books, one on the philosophy of the sciences, the other on social and political questions. “At last,” as he later put it, “I would achieve a Hegelian synthesis in an encyclopaedic work dealing equally with theory and practice.” He did, in fact, come to write on all the subjects he intended, but not in the form that he envisaged. Shortly after finishing his book on geometry, he abandoned the metaphysical idealism that was to have provided the framework for this grand synthesis.
Russell’s abandonment of idealism is customarily attributed to the influence of his friend and fellow Apostle G.E. Moore. A much greater influence on his thought at this time, however, was a group of German mathematicians that included Karl Weierstrass, Georg Cantor, and Richard Dedekind, whose work was aimed at providing mathematics with a set of logically rigorous foundations. For Russell, their success in this endeavour was of enormous philosophical as well as mathematical significance; indeed, he described it as “the greatest triumph of which our age has to boast.” After becoming acquainted with this body of work, Russell abandoned all vestiges of his earlier idealism and adopted the view, which he was to hold for the rest of his life, that analysis rather than synthesis was the surest method of philosophy and that therefore all the grand system building of previous philosophers was misconceived. In arguing for this view with passion and acuity, Russell exerted a profound influence on the entire tradition of English-speaking analytic philosophy, bequeathing to it its characteristic style, method, and tone.
Get a Britannica Premium subscription and gain access to exclusive content.
Subscribe Now
Inspired by the work of the mathematicians whom he so greatly admired, Russell conceived the idea of demonstrating that mathematics not only had logically rigorous foundations but also that it was in its entirety nothing but logic. The philosophical case for this point of view—subsequently known as logicism—was stated at length in The Principles of Mathematics (1903). There Russell argued that the whole of mathematics could be derived from a few simple axioms that made no use of specifically mathematical notions, such as number and square root, but were rather confined to purely logical notions, such as proposition and class. In this way not only could the truths of mathematics be shown to be immune from doubt, they could also be freed from any taint of subjectivity, such as the subjectivity involved in Russell’s earlier Kantian view that geometry describes the structure of spatial intuition. Near the end of his work on The Principles of Mathematics, Russell discovered that he had been anticipated in his logicist philosophy of mathematics by the German mathematician Gottlob Frege, whose book The Foundations of Arithmetic (1884) contained, as Russell put it, “many things…which I believed I had invented.” Russell quickly added an appendix to his book that discussed Frege’s work, acknowledged Frege’s earlier discoveries, and explained the differences in their respective understandings of the nature of logic.
Comments